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This paper is concerned with transparent boundary conditions (TBCs) for wide
angle “parabolic” equations (WAPES) in the application to underwater acoustics
(assuming cylindrical symmetry). Existing discretizations of these TBCs introduce
slight numerical reflections at this artificial boundary and also render the overall
Crank—Nicolson finite difference method only conditionally stable. Here, a novel
discrete TBC is derived from the fully discretized whole-space problem that is
reflection-free and yields an unconditionally stable scheme. While we shall assume
a uniform discretization in range, the interior depth discretization (i.e. in the water
column) may be nonuniform, and we shall discuss strategies for the “best exterior
discretization” (i.e. in the sea bottom). The superiority of the new discrete TBC over
existing discretizations is illustrated on several benchmark problems. In the litera-
ture different WAPESs (or WAPE and the standard “parabolic” equation) have been
coupled in the water and the sea bottom. We analyze under which conditions this
yields a hybrid model that is conservative for the acoustic field.1998 Academic press

Key Words:Underwater acoustics; wide angle parabolic equation; transparent
boundary conditions; finite differences; discrete transparent boundary conditions.

1. INTRODUCTION

This paper is concerned with a finite difference discretizatiomidé angle‘parabolic’
equations These models appear as one-way approximations to the Helmholtz equ
in cylindrical coordinates with azimuthal symmetry. In particular we will discuss the c
cretization of transparent boundary conditions.

In the past two decadepdrabolic’ equation(PE) models have been widely used fc
wave propagation problems in various application areas, e.g. seismology [10, 11], o

1 Corresponding author.

611

0021-9991/98 $25.00
Copyright© 1998 by Academic Press
All rights of reproduction in any form reserved.



612 ARNOLD AND EHRHARDT

and plasma physics (cf. the references in [6]). Here we will be mainly interested in th
application to underwater acoustics, where PEs have been introduced by Tappert [43]
account on the vast recent literature is given in the survey article [28].

In oceanography one wants to calculate the underwater acoustic prpgsaureemerg-
ing from a time-harmonic point source located in the watgzgt0). Here,r > 0 denotes
the radial range variable and<0z < z, the depth variable. The water surface izat0,
and the sea bottom at= z,. In our numerical tests of discrete transparent boundary col
ditions (in Section 4) we will only deal with horizontal bottoms. However, irregular bo
tom surfaces and subbottom layers can be included by simply extending the range ¢
We denote the local sound speed diy, r), the density byp(z,r), and the attenuation
by a(z,r)>0; n(z,r) =cy/c(z,r) is the refractive index, with a reference sound spee
Co (usually the smallest sound speed in the model). Then the reference wave numb
ko =2nf/co, wheref denotes the (usually low) frequency of the emitted sound.

The pressure satisfies the Helmholtz equation

19/ dp I ( _10p 272
(= - - N4p = 1.1
rar(rar)+paz<p az>+k° p=0 r1>0 (1.1)
with the complex refractive index
N(z,r) =n(z,r)+ia(z,r)/ko. 1.2)

In the far field approximatiorkgr > 1) the (complex valued) outgoing acoustic field
Yz 1) = Vkorpzrye ™ (1.3)
satisfies th@ne-way Helmholtz equation
Ur =ikoW1—L -1y, r>0. (1.4)
Here,/1 — L is a pseudo-differential operator, ahdhe Schodinger operator

L = —kg2pd(p713,) +V(z.1) (1.5)

with the complex valued “potential/ (z,r) =1 — N?(z,r).

The evolution equation (1.4) is much easier to solve numerically than the ellip
Helmholtz equation (1.1). Hence, (1.4) forms the basis for all standard linear models
underwater acoustics (normal mode, ray representation, parabolic equation) [2, 43]. Str
speaking, (1.4) is only valid for horizontally stratified oceans, i.e. for range-independ
parameters, p, andw. In practice, however, it is still used in situations with weak range
dependence, and backscatter is neglected.

“Parabolic” approximations of (1.4) consist in formally approximating the pseud
differential operator/1 — L by rational functions oL, which yields a PDE that is eas-
ier to discretize than the pseudo-differential equation (1.4). For a detailed description
motivation of this procedure we refer to [12, 20, 21, 28, 43, 44]. The linear approximati
of V1 — X by 1— A/2 gives the narrow angle standard" parabolic¢’ equation(SPE) of
Tappert [43],

Yy = —%Lw, r > 0. (1.6)
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This Schodinger equation is a reasonable description of waves with a propagation direc
within about 15 of the horizontal. Rational approximations of the form

Po — P12

— 1/2 A =
1= f (L) I (1.7)
with real pg, p1, 1 yield thewide angleparabolic’ equationdWAPE),
i (Po—piL
Yy —|k0(71_q1|_ 1>1ﬁ, r>0. (1'8)
In the sequel we will repeatedly require the condition
f'(0) = poth — p1 < 0. (1.9)

With the choicepo =1, pr=2, g1 = 3 ((1.1)-Padf approximant of1 — 1)>?) one obtains
the WAPE of Claerbout [10]. In [21] Greene determines these coefficients by minimizing
approximation error of (- 1)%2 over suitable.-intervals. These WAPE models furnish a
much better description of the wave propagation up to angles of abawl40, higher order
analogues of (1.7), (1.8) [14, 23] and split-step®altjorithms [15] have been successfully
used for acoustic problems. While we will restrict ourselves here to the WAPE (1.8),
remark that the construction of discrete transparent boundary conditions (see Secti
could be generalized to higher order PEs and even 3D problems.

In this article we shall focus on boundary conditions (BC) for the WAPE (1.8). At i
water surface one usually employs a Dirichlet (“pressure release”BZ=0,r) =0. At
the sea bottom the wave propagation in water has to be coupled to the wave propagat
the sediments of the bottom. The bottom will be modeled as the homogeneous half-s
regionz > z, with constant parametets, op, anday. Throughout most of this paper we
will use a fluid model for the bottom by assuming that (1.8) also holdg fog,, possibly
with a different rational approximation (1.7) (subject to tieeipling conditior(2.23)). Only
at the end of Section 2 we will comment on the coupling of scalar and elastic “paraba
models.

In practical simulations one is only interested in the acoustic {fi€ld r ) in the water, i.e.
for 0 < z < z,. While the physical problem is posed on the unbourdiderval (0, o), one
wishes to restrict the computational domain in theirection by introducing an artificial
boundary at or below the sea bottom. This artificial BC should, of course, change the moc
little as possible. Until recently, the standard strategy was to introduce rather thick absor
layers below the sea bottom and then to limitzhange by again imposing a Dirichlet BC
[12, 14, 29, 34, 44]. With a carefully designed absorption profile and layer thickness
strategy has been very successful. But without a comparison to the exact half-space so
it is hard to estimate how much an absorbing layer modifies the original problem. A
absorbing layers increase the computational costs, for SPE- or WAPE-simulations, typi
by a factor around 2 [28, 45]. However, in simulations without attenuation (“false absork
layer method” [28, 45]) or over an elastic sea bottom [14], much thicker absorbing lay
have been used to ensure accuracy and, respectively, numerical stability.

In [35] and [37] Papadakis derivathpedance BCer transparent boundary conditions
(TBC) for the SPE and the WAPE, which completely solves the problem of restrictirzg the
domain without changing the physical model: complementing the WAPE (1.8) witha T
at z, allows to recover—on the finite computational doméinz,)—the exact half-space
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solution on O< z < co. As the SPE is a Schdinger equation, similar strategies have beel
developed independently for quantum mechanical applications [5, 7, 24].

Towards the end of this introduction we shall now turn to the main motivation of this pap
While TBCs fully solve the problem of cutting off ttedomain for the analytical equation,
their numerical discretization is far from trivial. Indeed, all available discretizations a
less accurate than the discretized half-space problem and they render the overall nume
scheme only conditionally stable [7, 33, 36, 45]. The object of this paper is to constr
discrete transparent boundary conditioBTBC) for a Crank—Nicolson finite difference
discretization of the WAPE such that the overall scheme is unconditionally stable anc
accurate as the discretized half-space problem.

The paper is organized as follows: In Section 2 we review the TBCs for the WAPE a
discuss the coupling of the WAPE to the SPE and the elastic PE. In Section 3 discrete T
are derived and analyzed; their superiority over existing discretizations is illustrated in
numerical tests of Section 4.

2. TRANSPARENT BOUNDARY CONDITIONS AND MODEL COUPLING

In this section we shall first discuss the well-posedness of the evolution problem for
WAPE in the critical nondissipative case, i.e. {0£ 0,

yr = iko[f(L) — 1]y, z>0,r > 0, (2.1)

subject to the BG (0, r) =0, and with the rational functiof givenin (1.7). For simplicity
of the analysis we only consider the range-independent situation; the functional anal
proof of this theorem is deferred to the Appendix.

THEOREM 1. Assume that the refractive indexap, the densityp(z) > 0, and p~1(2)
are bounded for z 0. Then the WAPE has a unique solution for all initial data in the
weighted [-space B(R*; p~1d2) if and only if the pole of €1) at A=g; * is not an
eigenvalue of the operator L with Dirichlet BCs at2.

In applications of underwater acoustics the sound spérdis typically larger in the
sea bottom than in the water. Therefdféz) forms a “potential well” in the water region
0 < z < z,, which typically gives rise to bound states lofthat represent the propagating
modes of (1.4) and (1.8). All of the corresponding eigenvalues satisfy0< Vp =1 —
cg/cg <1, if cg=min, ¢ c(2). Asq; is much smaller than 1 in all practical simulatiorisirq
the WAPE of Claerbout; also cf. [21]),usually lies in My, 00), the continuous spectrum of
L. Theorem 1 then guarantees the unigue solvability of the evolution equation (2.1) for
initial data. Let us compare the situation at hand (i.e. the WAPE on the original unbounc
interval—and later also the WAPE with a TBC) to the WAPE restricted tozthderval
[0, zmax With a homogeneous Robin BC at,4 as a simple model for an absorbing layer;
there,L has a pure eigenvalue spectrum which inhibits the solvability of (2.1) in sevel
cases of practical relevance [3].

Now we turn to the matching conditions and later to the TBCs at the water—bottc
interface(z=z,). As the density is typically discontinuous there, one requires continui
of the pressure and the normal particle velocity,

w(zb_vr) = '(p(Zb+,r), (22a)

1ib.Z(Zk)’v r) — ‘(/IZ(Zb*’ r)
Pw Pb '

(2.2b)
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wherepy, = p(z,-, 1) is the water density just above the bottom agdienotes the constant
density of the bottom.

With these matching conditions we shall now derive an estimate fot th@ecay of
solutions to the WAPE (1.8}, > 0. We assum@ = p(z) and apply the operator4q;L to
(1.8):

[1—auV +aukg *pd2 (0 102) |9 = iko[po — 1 — (p1 — )V
+(p1— qkg 200, (p719,) Y. (2.3)

Multiplying (2.3) bpr—l, integrating by parts on @ z < z,, and taking the real part gives
Zy Zy —
ar/ W PPp~tdz=2(p1 - q1>ko{/ Im[V]ly 2o~ dz— kozpvzllm[wzwhzzz,,}
0 0
z _
+aud [ (ReM a1~ 2imVIimiyi 1) 0z
JO
2 % 2 1 2 1 I
+ky ar/ [Y2“p~ " dz— 2Ky “ oy Re[l/fzrl/f“z:zb} (2.4)
0
Analogously, multiplying (2.3) by;rp—l and taking the imaginary part we get
Zy
(po—Dar [ 1o a2
0
1 % 2 3 m
= —201kg / IM[V]Iy: 120~ dz+ 201kg o IM[Yz0 12z,
0
Zy —
+ -] [ (ReMa v+ 2ImVIimLyi 7)otz
0

2, /O Wt dz— 2k %ot Im] wzwnz_zb_} (2.5)

After an easy algebraic manipulation we obtain from (2.4), (2.5)

Zy Zy - - —
o [Pt dz= 20y [ o Diiu o dz- Cilg o ImBA ], (26)
0 0
with
2(p1 —q)? =« i
CL— (P1— ) b=t 191 ks La;
P1 — Pot1 Pr—a1
In the same way a similar equation can be derived for the bottom regiaz:
oo _ CO oo o _ B -~ o —
ar/ v |%p 1dZ:—2010lba/ ERVARS: 1dZ+C1kolpbllm[8rw28r1p]‘Z:Zw.
Zy Zy
(2.7

Adding the two above equations with (2.2) gives

Bl (. DI? = —2c1/ « 2y ot dz 2.8)
0
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for the weighted_?-norm

W01 =/0 Wz 0@ dz (2.9)

In the dissipation-free case €0) || (-, r)| is conserved and far > 0 andpyg; — p1 <0

it decays. The discrete analogue of this “energy”-conservation (or -decayf@® will be
the main ingredient for showing unconditional stability of the finite difference scheme
Section 3.

Now we shall review the transparent bottom boundary condition for the SPE and ske
the derivation of the TBC for the WAPE. We assume that the initial gtata v (z, 0), which
models a point source locatedas, 0), is supported in theaterior domain0 < z < z,. Also,
let the bottom region be homogenous; i.e., let all physical parameters be constanizpr
The basic idea of the derivation is to explicitly solve the equation in the bottom region, whi
is the exterior of the computational domd z,). The TBC for the SPE (or Scbdinger
equation) was derived in [5, 7, 24, 33, 35, 37] for various application fields,

r
W(Zb,l’)=—(27tko)_1/ze(”/4)i&/ Va(zo, t — 1) P72 dr, (2.10)
Pw Jo

with b =ko(NZ — 1)/2. This BC is nonlocal in the range variablend involves a mildly
singular convolution kernel. Equivalently, it can be written as

1/2 o r .
V2(2,1) = —<%> g (/i e—'bf"—wi/ V(zp, 7)€ T (r —7)"Y2dr, (2.11)
T P dr Jo

and the r.h.s. can be expressed formally as a fract@)aie(rivative [5,7, 9]
Yz(Zp, 1) = —/2ko e /DI gbF p—Waﬁ/Z [V (zo, 1) €7""]. (2.12)
Pb

In [9] this square root operator is approximated by rational functions which leads tc

hierarchy ofhighly absorbing(but not any more perfectly transparent) BCs for the SPE

By introducing auxiliary boundary variables these BCs can be expressed through lo

in-r operators. Hence, this allows for a “local” (2-levelripdiscretization scheme [16].

This scheme, however, introduces numerical reflections at the artificial boundary, wh

amplitude depends on the chosen approximation order of the above square root opers
In order to derive the TBC for the WAPE we consider (2.3) in the bottom region,

(86 + Gk *02) ¥r =1 [vb + (P1 — Ky 07 ] ¥, 2> 2, (2.13)
with
Sb=1—q(1—N2), vp=ko[po—1— (p1—an)(1—NJ)].
After a Laplace transformation of (2.13)inve get

[a1S — i (p1 — Qu)ko] ¥ 22, S) = Ka(ivp — 869V (2, ). (2.14)
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Since its solution has to decay as> oo we obtain

lup
1)0(2 S) = I/f(ZbJr S) EXp{ \/qls—l(pl—ql)ko( —Zb)}, Z> Zp, (2.15)

and with the matching conditions (2.2) this gives

iUb — 6pS

~ Pw
Va2, 9 = ko 1S —i(p1 —guko

¥ (2o, ). (2.16)

Here, i/~ denotes the branch of the square root with a nonnegative real part. An inv
Laplace transformation [8] yields the TBC at the bottom for the WAPE:

Y (2, 1) = _”77¢z(zb, r +/377*/ Va(Zo.t — 1) €77€P [ Jo(BT) +1d1(BT)] d,
(2.17)

1 = p1—POQ1k0 g PL—®

ko S of

ko,

where Jy, J; denote the Bessel functions of order 0 and 1, respectively. This is a sli
generalization of the TBC derived in [37], whepg was equal to 1. Equivalently, (2.17)
can be written as

Va(2p.7) = in_l%‘P(Zb, r)+ ﬂn_l% /0 Y (Zo.1 — 1) TP Jo(BT) — 1 1(BT)] dr.
(2.18)

Both TBCs are nonlocal in; in range-marching algorithms they thus require storing tt
bottom boundary data of all previous range levels.

We remark that the asymptotic behaviour (for co) of the convolution kernel in the
TBC (2.11)isO(r ~/?), which can be seen after anintegration by parts. Using the asympt
behaviour of the Bessel functions (see (3.5)) one finds that the convolution kernel of (2
also decays like (r —¥/2).

At the end of this section we shall now briefly comment on coupled models for unc
water acoustics, as proposed in [36, 37]. In [37] the WAPE for the o@arz < z,) is
coupled to the SPE for the sea bottgm> z,). In fact, these models are coupled via ¢
TBC corresponding to the SPE, but this is equivalent to the half-space problem. Here
want to point out a mathematical ambiguity of this coupling that may strongly influer
the numerical stability of the discretization scheme. To this end we consider this mc
coupling in the case of constant sound speed and density, which is rather unrealistic,
illustrates the situation.

Let us first review the WAPE (2.1) with the Sdulinger operatot. = —kgzazz. When
discretizing (2.1) one usually applies the operateigiL to (2.1) which gives the following
PDE of “Sobolev type” [27]

[A—aiL)yr =iko[po —1— (p1 — qu)L]¥. (2.19)
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Since the operators in the numerator and denominator of (1.8) commute (even for r
constant andp) this step is mathematically rigorous, and (2.19) is easy to discretize (s
Section 3).

Disregarding for the moment the nonlocality of the involved pseudo-differential operat
one would formally want to write the evolution equation for the coupled model (WAPE at
SPE) as

Ur = ikoAyr (2.20)
with
Po+ Pk, 282
(Wk?zdzz —1)1% 0<z<1z, (2.21a)
Ay =1
5 0%, z> 2z, (2.21b)

However, the right-hand side of (2.20) is not well defined, due to the nonlocality of tl
pseudo-differential operator in (2.21a). Also, its reformulation as in (2.19) is no long
justified in the coupled case. Even in the dissipation-free case it would result in a nonc
servative evolution equation and, hence, in a nonconservative numerical scheme (ne
theless this strategy is used in [37]). This is illustrated in Example 3 of Section 4. Usi
more involved pseudo-differential operators it is possible to find a correct and conserva
interpretation of (2.20), (2.21) (for mathematical details see Appendix B). However,
discretization would be very difficult.

From the above we conclude that it is not advisable to couple the WAPE and the S
numerically. As an alternative we shall now analyze couplings of WAPEs with differe
parametergo, p1, g1 that can be reformulated as a PDE, like in (2.19). The coupled mode

. (P2 — p1(2)L
WF - Iko(l—ql(Z)L - 1) 1// (2.22)

is well defined and can be transformed to (2.19) if the numerator and denominator in (2.
commute. Under the condition

P1(2)/01(2) =: u = const (2.23)
we can rewrite the pseudo-differential operator in (2.22) as

P2 —p@L  ult@—p?o(2L] -1
1-q@@L 1@ -p 2L

, (2.24)
with

@ =[u—-p@] " 0@ =p@[PD - P@nu@D] (2.25)
Here the numerator and denominator commute, and hence, (2.22) can be written in
form of (2.19). The resulting evolution equation is conservativeiR™; (op) ' dz) and

it allows for a conservative and unconditionally stable discretization (see Section 3 :
Example 3 in Section 4).
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If the parametersy, ps, q; are fixed in one medium, condition (2.23) still leaves tw
free parameters to choose a different rational approximation modél-efr)Y? for the
second medium (cf. [21]). Hence, one can, in fact, obtain a better approximation in
second medium than with the originally intended “parabolic approximation.”

Finally, we add a small remark on the coupling of the SPE wittekastic parabolic
equation(EPE) for the sea bottom [13, 22, 47]. In [36, 37] a TBC for this coupling we
derived. It reads for the Laplace transformed wave field,

w11
Pw kONél {/ Mp(s)
—43/Mp(®) /Ms(®) (Ms(8) + N2) | 9,25, 9), (2.26)

P (2.9 = - [(2M(9) + N2)?

with the notation

Mp(s) =1— N3 — %s, Ms(s) = 1 — N2 — %s. (2.27)

Here,Np =np +iap/ko andNs =ns + ias/ kg denote the complex refractive indices for
the compressional and shear waves in the bottom (cf. (1.2)). In a tedious calculatior
BC can indeed be inverse Laplace-transformed (using [8]) and it reads

V(2 1) = C[/ Va(zo,t — 1) €97 g(r) dr —2i¢/ Va2, T — 1) €97 2|,
0 0
(2.28)

with

pp 2 2 (mi ko /2 Ko 2 2
c=- 2 e ,="0N2_1), g=—"0(NZ-N2),
kag/ZNé T w 2( p ) % 2( p S)

Ko

g(r) = =31 — )t Y2 4 E(BNS — N2 — 2N2e¥) 7732

2 1
+ % (Ng = NgNS + NS+ Np — N52>r_1/2 =0t ?).

While this inverse transformation was carried out numerically in [36, 37], our analyti
TBC may simplify the discretization of this coupled model. DTBCs for the SPE—EI
coupling (in the spirit of Section 3) will be the topic of a subsequent paper.

3. DISCRETE TRANSPARENT BOUNDARY CONDITIONS

In this section we shall discuss how to discretize the TBCs (2.10), (2.17) in conjunc!
with a Crank—Nicolson finite difference scheme for the SPE and the WAPE. Most of
time we shall only consider uniform grids mandr . While a uniform range discretization
is crucial for our construction of discrete TBCs, this construction is independent of
(possibly nonuniform}-discretization on the interior domain.
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For simplicity we first consider the uniform grig = jh, r, =nk (h=Az, k= Ar) and
the approximationy{' ~ v(zj, rn). The discretized WAPE (2.3) then reads

[1- Q1an+1/2 + Gikg 2pj Dr?/z (:Oj_l Dr?/z)] hRVAL

: n+1/2 2 o (i 11 YT T YT
=iko[po—1— (p1— )V, + (P1 — Au)Kg “pj Dp 2 (0; Dh/z)]T»

(3.1)

with VJ-““/2 :=V (2, I'ny1/2) and the usual difference operators

Yl yh AL
+an __ 7] i 0 n__ "j+1/2 =12
Dy v = kK Dh/zlﬁj == hn
It is well known that this scheme is second ordehiandk and unconditionally stable

[3]. Proceeding similarly to the derivation of (2.8) one can show

n|2 : 2
i Z'ij—-’ = —Culg" X Im{W Y igtopyg| L 62
J

jez jez P1— i

with C1 = 2(p1—a1)?/(p1— Pod1). Hence, the scheme (3.1) preserves the discrete weight
L2-norm in the dissipation-free cas¥ feal). This also holds when using a homogeneou
Dirichlet BC atj =0.

In the literature three different strategies have been proposed to discretize TBCs, mo
however, just for the Schdinger equation. In [45] Thomson and Mayfield useddre
cretized TBCor the SPE,

h =, . .
Y=yl = Wlﬁg -B Z( M=) e, (3.3)
m=1
with
in (L jbmk
B = —(2rky) V2em/A b g e(i/zmks'n(ébk) ;o__en
Pw

) m—-—- - —-
20k 2,/m+ 3
On the fully discrete level this BC is not perfectly transparent any more and it may a
yield an unstable numerical scheme. In analogy to the analytic TBC (2.10) it requires
boundary data from the whole “past range;' [Q_1].

In the semi-discrete approachf Schmidt and Deuflhard [39] a TBC is derived for the
semi-discretized (in) SPE, which also applies for nonuniformdiscretizations and range-
dependent coefficients in the exterior domain. This TBC yields an unconditionally sta
method (in conjunction with an interior finite element scheme) [40]. In [40] this approa
is also applied to uniform exteria-discretizations, and one then recovers—through
different derivation—the discrete TBC from [5]. While the semi-discrete approach st
exhibits small residual reflections at the artificial boundary, the discrete TBC is reflectic
free [40] (at the end of this section we shall return to this comparison when discussing
“best exterior discretization”). In the recent article [41] the methods of [40] are extendec
nonuniformr -discretizations and range-dependent potentials.
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In [5] we constructed discrete TBCor the fully discretized Scludinger equation and
the resulting scheme elliminates any numerical reflections. The same strategy was
in [19] for advection diffusion equations and in [17] for the wave equation in frequen
domain.

Here we shall generalize the latter approach (i.e. fully DTBC) to the WAPE and comg
it numerically to the discretized TBC. To this end we use a discretization of the TBC (2.
for the WAPE that is analogous to (3.3),

/ oz, tn — 1) €97 €F [ Jo(B7) +11(80)] de
0

N1 e . ~ -
= Ya2(2Zp, Tn — 7) €97 [Jo(B7) +iJ1(BD)] dT
m=0"'m
n-1 lﬁn m l/f Imi1
~ %{Jo(ﬁrmﬂm+|J1<ﬁrm+1/z>] / é’" dr,
m=0

with the damped Bessel functionk(z) := €2J,(2), z € C. This yields the discretized
TBC,

h n-1
Y= = '—@m B'Y (5™ — ¥5T) . (34)
m=0
with
) ) - -
B'=ip e(i/z)ek%, lm = €™ Jo(Brmi1/2) +1J1(Brmi12)].
3

In far field simulations one has to evaluakgz) for large complexz, when numerically
calculating these convolution coefficierfis This, however, is a rather delicate problem
and many standard software routines are not able to evalugefor large complex. This
is due to the exponential growth of the Bessel functions for fixadd|z| — oo (see [1]):

1/2
3, (2) = (%) {cos(z— v% - %) + e'mZ'O(|z|‘1)}, —m <argz<m. (3.5)

For this reason we used a subroutine of Amos [4] to evaluate the damped Bessel func
J,(2), Im z> 0 (note that InB > 0 for the standard parameter choices in (1p7): pods > 0
andq; > 0).

In [33] Mayfield showed for the attenuation-free case thatdiseretized TBGor the
SPE (3.3) destroys the unconditional stability of the underlying Crank—Nicolson sche
and one can expect a similar behaviour for the WAPE. These existing discretizations
induce numerical reflections at the boundary, particularly when using coarse grids. He
the existingdiscretized TB(33, 45] exhibits both stability problems and reduced accurac
which may require the usage of unnecessarily fine grids.

Instead of using an ad-hoc discretization of the analytic TBCs like (3.3) or (3.4) we v
constructdiscrete TBCdor the fully discretized half-space problem, as done in [5]. Ot
new strategy solves both problems of tiscretized TBGit no additional computational
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cost. With our DTBC the numerical solution on the computational domain 6 J exactly
equals the discrete half-space solution {oa Npy) restricted to the computational domain
0<j < J. Therefore, our overall scheme inherits the unconditional stability of the ha
space solution that is implied by the discréfeestimate (3.2).

To derive the DTBC we will now mimic the derivation of the analytic TBCs from Section .
on a discrete level. For the initial data we assu,hﬁe: 0, j > J — 1 and solve the discrete
exterior problem in the bottom region, i.e. the Crank—Nicolson finite difference schel
(3.1) forj>J,

[Réy + qAR] (v = vf) =i [Reo+ AT (v]'* + ¥7), (3.6)
with
2o h? kK o
b=1-0q(1- N7, R= - g=-— k1
b Q1( b) p—q K q 2p1—qlko
k

ko[Po— 1= (pr—qu)(1— NZ)],

Kb—z

WhereAﬁwj“ =¥ — 21#}‘ + ¥4, andR s proportional to the parabolic mesh ratio. By
using theZ-transform,

2l =di@ =3 ¥jz" zeCid>1, &9

n=0
(3.6) is transformed to
[z+1+iq(z— DAY (2) = —iR[s(z — 1) — ikn(z+ DIV (2. (3.8)
The solution of the resulting second-order difference equation takes the}fcﬁn)n: v{ (2,
j > J, wherev;(2) solves

_ i_RSb(Z— 1) —ikp(z+ 1)

v2—2|1 -
2 z+4+14iqz-1)

v+1=0. (3.9)

For the decreasing mode (fs> oo) we requirev1(2)| < 1. We obtain theZ-transformed
DTBC as

V112 = v '@V, (2), (3.10)

and in a tedious calculation this can be inverse-transformed explicitly. The DTBC for t
SPE and the WAPE then reads

n
A+iy] =y)xla=> Y lom nx1, (3.11)
m=1
with the convolution coefficients, := (1 + iq)Z‘l{vfl(Z)} given by

by = [1+iq - Ié(y - ia)e‘f]ag— 'EH(—l)“e‘“E

n-1
-t { Qn(w) +€272Qns() + e ) " (—€5)" Q) } (3.12)

m=0
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F _H?

y =R, 0=—Rkp, A={

E
¢ "TVEG “TIEr
1-iq i 19

— arqE — LEIM2d /2
1+iq’(p argk, ¢ 2|| g/,
E=( +io)ly—4q+i(c+4], F=y(y—4q +o(oc+4),
G=(y —io)y—4q—i(c+4, H=y+ioc+(y—io)e't.

¢ =arg

In (3.12)58° denotes the Kronecker symbol a@g(x) := A" P, (x) thedamped Legendre
polynomials(Qo= 1, Q_; =0). In the nondissipative casey(=0) we havell| > 1, u €
[—1, 1], and hence,P,(11)| < 1. In the dissipative casg, > 0 we havgi| > 1, u becomes
complex, andP,(w)| typically grows withn. In order to evaluaté, in a numerically stable
fashion it is therefore necessary to use the damped polyno®ijd}s) in (3.12).

The convolution coefficients (3.12) behave asymptotically as

= —iH(=D"EM™, n— oo, (3.13)

which may lead to subtractive cancellation in (3.11) (note ¢t w5"+1 in a reasonable
discretization). Therefore we use the following numerically more stable fashion of

DTBC in the implementation,
n—
A+iny] = Loy = A—inyii+ ) ¥y sim, (3.14)

m=1

with s, := ¢, + €¢¢,_1, n > 1. The coefficients, are calculated as

S i ) —A72Qn-
Si=|1+iq) €+ =(y —io) 5%+§Qn(,u) Qn Z(M). (3.15)
2 2n -1
Alternatively, they can be calculated directly with the recurrence formula
2n—-3 n—3
= 1A sy — Tk‘zsnfz, n>4, (3.16)

onces;, S, 3 are computed from (3.15). Using asymptotic properties of the Legent
polynomials [42] one finds, = O(n~%?), n— oo, which agrees with the decay of the
convolution kernel in the differential TBCs (2.10), (2.17).

This decay of the, motivates considering also a simplified version of the DTBC (3.1
with the convolution coefficients being cut off beyond an indéxThis means that only
the “recent past” (i.eM range levels) is taken into account in the convolution in (3.14):

n-1
A+iy] s —Lov] =A—i¥ii+ D ¥ism (3.17)
m=n—M

This, of course, reduces the perfect accuracy of the DTBC (3.14), but it is numeric
cheaper while still yielding reasonable results for moderate valuds. e remark that
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the resulting scheme does not conserve the disdtréteorm (cf. (3.2)), and hence, the
numerically stability of the simplified DTBC is not yet known.

So far we did not consider the (typical) density jump at the sea bottominthe DTBC (3.1
In the following we review two possible discretizations of the water—bottom interface. F
the usual gridzj, j € No, with Jh= z, the discontinuity of is located at the grid poirz;.
In this case it is a standard practice [3, 34] to use (3.1) with

IOW’ J < ‘]1
pj=q o j=3, (3.18)
Obs j > J.

As an alternative one may use an offset grid, = (j + %)h, &?Nw(ij,rn), j=
—1(1)J, where the water—bottom interface with the density jump lies between the g
pointsj = J — 1 andJ. For discretizing the matching conditions in this case one wants
find suitable approximations fa¥ andp at the interface,,, ¥ ~ v (z,), and pest = 0 (2p),
such that both sides of the discretized second matching condition (2.2b),

19— 1w-—9y]
1Y == V31 are equal to——w Vi1
pw  h/2 po  h/2 pet D

(3.19)

This approach results in @&ffective densityes = (ow + pp)/2 (based on a different deriva-
tion, this was also used in [13]). In numerical tests we found that the offset grid with t
above choice opes produces slightly better results that have less Gibbs’ oscillations at t
discontinuity ofy, at z,. This may be understood by the fact that (3.18) requires a high
order derivation (using the evolution equation) than our derivation (3.19) (see also [13,
34]). Because of the discontinuity ¢f, the higher order derivation yields (slightly) poorer
results. Therefore we choose the offset grid for the implementation of the DTBC. At t
surface we use instead ¢f = 0 the offset BGJj = —y" ;.

Finally it remains to reformulate the DTBC (3.11) such that the density jump is taken ir
account. We rewrite the discretization of the second depth derivative-ak from (3.1):

h?[p3Df (03 DR 2W5)] = ARYS + (1 - ﬂ) (95 - 95.0)- (3.20)

Comparing the r.h.s. of (3.20) to (3.6) we observe that only one additional term appe
and instead of (3.8), we get

S(z—1) —ikp(z+ 1)
z+1+iq(z-121

U512 — ]WJ(Z) _Z(IZJ(Z)_lzJ—l(Z))- (3.21)

Using IZJH(Z) = vl(z)I;J (2), wherev1(z) denotes the solution of (3.9), and considering
the fact that(2) + vy 1(2) is equal to the term in the squared brackets in (3.21) we obta
the Z-transformed DTBC:

Peft & Peft  _1

V3@ — ¥y_1(2) = @ - g @V5 (2. (3.22)
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Hence, the DTBC, including the density jump, reads

A+ig) 2290, + [(Hiq)(l— ﬂ) —Ko} v
Peft yel

eff
Pb = Pb \ = = -
=—(1—iq)—=¥)F - (1-iq) (1 - —) VI U sem (3.23)
Deff Peff 1

with the convolution coefficients, given by (3.15).

Atthe end of this section we now address the questioootiniform depth discretizations
Inthe derivation of the DTBC we needed a unifarrdiscretization for the exterior problem
onz>z, i.e. j > J — 1. For the interior problem, however, a nonuniform discretizatic
(even adaptive im) may be used, and this would not change our DTBC (3.23). For a
given interiorz-discretization and a uniform grid spacihg in the exterior domain, the
DTBC will always yield, on the interior domain, the same solution as the corresponc
discrete half-space solution.

This raises a natural question: Given an interior (possibly nonunifardidcretization,
what is the best uniform discretization of the exterior domain? To analyze this ques
we first consider the three types of errors that are relevant here: First, the error assoc
with the given interior discretization does not depend on the choid®g,.ofn order to
avoid strong reflections due to the nonuniform grid we will assume that the interior ¢
spacingh; := z; — zj_1 “varies slowly withj” and can be representedtas= h(z;) with a
“smooth” functionh(z). To the authors’ knowledge, the reflections in irregular grids ha
not yet been theoretically analyzed for the Sxinger equation, but very similar effects
appear in hyperbolic and parabolic equations [46, 32]. In numerical tests, however, one
easily verify that discontinuities df(z) would introduce spurious numerical reflections o
an incident wave (cp. [46] and references therein). Such reflections can be largely red
by “smoothing” such a discontinuity ¢f(z) (cf. Example 4 of Section 4).

Second, the discrete BC at may cause outgoing waves to be partially reflected ba
into the computational domain, and these reflections strongly depelmgl on

Finally, for the discretization error of the (uniformly discretized) exterior domain v
have to distinguish between traveling waves and evanescent waves. In the first cas
discretization error can be interpreted as a modification to the dispersion relation for
outgoing waves (incoming waves are not present in the exterior domain). But the accu
of their propagation speed is irrelevant, as long as we are only interested in the soluti
the interior domain. Hence, the exterior discretization error can be disregarded for oL
ing traveling waves. The discretization error of evanescent waves, however, influence
interior solution.

Since our DTBC s fully equivalent to a discrete half-space problem, the above discus
of the three error types can be completely reduced to the problarteafal grid reflections
for the SPE or the WAPE. In the continuous lintit,(— 0) of the exterior discretization, this
also holds for the semi-discrete approach of [39, 40] for the@lthger equation. Following
the above discussion we can now give the best exterior discretization in the “traveling v
regime”: the uniform exterior grid spacirtg, = h(z,) generates a completely reflection-
free BC and the uniformity of the exterior grid ensures that the outgoing waves will ne
be reflected back. Their inaccurate resolution in the exterior domain only causes inacc
wave speeds, but this does not affect the interior solution.
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This behaviour is numerically verified in the simulations of Section 5 in [40], wher
a uniformly spaced grid was compared to the semi-discrete approach for the exterior
main. There, a Scbdinger equation with a constant potential is considered, and hen
the initial Gaussian wave packet consists only of traveling wave modes in the extel
domain.

In the “evanescent wave regime,” however, the picture is not that simple, and it is |
known yet whether there exists a unique “best exterior discretization.” Our simulations
Section 4 indicate that it may, indeed, be advantageous to use a DTBC that correspond
finer exterior discretization, as long as the interior and exterior grid spacings are gradu
matched to each other.

4. NUMERICAL EXAMPLES

In the first two examples of this section we shall consider the SPE and the WAPE
comparing the numerical result from using our new discrete TBC to the solution usi
either the discretized TBC of Thomson and Mayfield [45] or an absorbing layer. Due
its construction, our DTBC yields exactly (up to round-off errors) the numerical half-spa
solution restricted to the computational interval Z6]. The simulation with discretized
TBCs requires the same numerical effort. However, their solution may (on coarse gri
strongly deviate from the half-space solution.

In each example we used the Gaussian beam from [28] as initial data. Below we pre
the transmission loss10 log,, | p|?, where the acoustic pressypés calculated from (1.3).

ExampLE 1. This is a well-known benchmark problem from the literature [28, 37, 45
In this example the ocean region€X < 240 m) with the uniform densitg,, = 1.0 g cnT?
is modeled by the SPE (1.6). It contains no attenuation and a large density jymp (
2.1g cn1 ) at the water—bottom interface. Hence, this problem provides a test of the tre
ment of the density jump in the TBCs applied alang= 240 m.

The source off =100 Hz is located at a water deh= 30 m and the receiver depth is
atz, =90 m. The sound speed profile in water is givercts) = 1498+ |120—z|/60m s,
and the sound speed in the bottormys= 1505 m s*. For our calculations up to a maximum
range of 20 km we used a reference sound spged1500 ms* and a uniform computa-
tional grid with depth steg\z=2 m and range stepr =5 m (the same step sizes were
used in [45]).

In Fig. 1 the solid line is the solution with our new discrete TBC (3.23) and the dotte
line is obtained with the discretized TBC (3.3). The discretized TBC clearly introduce:s
systematic phase-shift error, which is roughly proportionél zoThe discretized TBC also
produces artificial oscillations (cf. the zoomed region), while our new DTBC yields tt
smooth solution with the same numerical effort.

Figure 2 compares the results of our new discrete TBC (solid line) to the solution obtair
with an absorbing layer of 240 m thickness (dotted line) and a homogeneous Dirichlet
at zmax= 480 m. Hence the computation took about twice as long as by using the disct
TBC. In our experiments we obtained a better match to the “exact” half-space solution
using theexponential absorption profile

ap(2) = 1o[exp{4ﬂ} - 1} dB/hb, Zb < Z < Zmax (4.1)

Zmax — Zp

rather than a linear profile. We remark that the profile (4.1) and thickness of the absort
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Example 1
30 T T T T T T T T T

Transmission Loss -10*log_10 Ipi*2

|
2 4 6 8 10 12 14 16 18 20
Range r [km]

100
0

FIG. 1. Transmission loss a =90 m for Example 1: the solution with the new discrete TBG{—)
coincides with the half-space solution; the solution with the discretized TBifitroduces a phase-shift and
artificial oscillations.

layer were designed as to yield a close match to the “correct” solution. Without suct
“a-posteriori data fitting,” however, a calculation with an absorbing layer would usue
yield a solution with a somewhat larger deviation than suggested by Fig. 2. With a thic
layer one can of course stillimprove the results of Fig. 2; e.g., no more artificial oscillati
are visible when using a layer of 760 m.

Figure 3 shows the significant deviations of the solutions using either the discretized"
or an absorbing layer of 240 m from the computed half-space solution, which coinci
with the solution using our new DTBC.

EXAMPLE 2. This example appeared as the NORDA test case 3B in the PE Worksh
[26, 28, 37, 45]. The environment for this example consists of an isovelocity water colt
(c(2) = 1500 mst) over an isovelocity half-space bottoy & 1590 ms?). The density
changes at, =100 m fromp, = 1.0 gcnt? in the water top, = 1.2 gcnt3 in the bot-
tom. The source and the receiver are located at the same depth near the hottam=
99.5 m. The source frequency fs= 250 Hz. The attenuation in the water is zero, and tt
bottom attenuation i&, = 0.5 dB/Ap, Whereir, =c,/f denotes the wavelength of sounc
in the bottom. Here, the steepest angle of propagation (which is the equivalent ray-g
of the highest of the 11 propagating modes) is approximately(&0[26, 45]). Since the
source is located near the bottom, the higher modes are significantly excited. Therefor
wide angle capability is important here and we use the WAPE (1.8) (with the coefficie
of Claerbout) to solve this benchmark problem.
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Example 1
30 T T T T T T T T T

Transmission Loss -10*log_10 Iplr2

Il

2 4 6 8 10 12 14 16 18 20
Range r [km]

100
0

FIG. 2. Transmission loss @& =90 m for Example 1: the solution with an absorbing layer of 240 1¥) (s
quite satisfactory in comparison to the “exact” solution computed with the discrete FBES{). It is in phase

but shows some artificial oscillations and overestimates the transmission loss at 6 km, 7 km, and in the r
16-19 km.

The maximum range of interest is 10 km and the reference sound speed is chose
Co=1500 ms?. The calculations were carried out using the depth #tep- 0.25 m and
the range step\r =2.5 m. Since the source is placed close to the bottom, the TBC wi
applied 10 m below the ocean—bottom interface (the same was done in [45]).

The typical feature of this problem is the large destructive interference null at a lar
of 7 km. Figure 4 compares the transmission loss results for the discrete and discret
TBCsinthe range from 5 to 10 km. In a second comparison we extended the computati
domain up to 200 m. With the given bottom attenuation this 100 m layer is thick enougt
yield the reasonable approximation shown in Fig. 5.

Figure 6 shows the deviation of the solutions with the discretized TBC and with tl
absorbing layer from the computed half-space solution, which coincides with the solut
using our new discrete TBC.

ExamPLE 3. Inthis example we illustrate the theoretical findings of Section 2 on couple
models. We use the physical parameters of the first two examples but different models
the water and the bottom region.

We start with considering the environment of Example 2 and compare the results of dif
ent model couplings. First, we fix the WAPE of Claerbout (CWABE=1, p1 = %, 0= ;11)
in the bottom and choose a different (and, in fact, better) rational approximation (GWAF
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FIG. 3. Vertical cut of the three solutions at= 19 km for Example 1}y (z, r

Example 2

=19 km)|.

601

]
(=]

Transmission Loss —10*log_10 Ipl*2

80
90 e
— new discrete TBC
1001 |.... discretized TBC 7
5 6 7 9 10

8
Range r [km]

FIG. 4. Transmission loss & = 99.5 m for Example 2: the solution with the new discrete TBC coincide:

with the half-space solution, while the solution with the discretized TBC still deviates significantly from it for t
chosen discretization.
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Example 2

60}

~
o

o]
(=]

©
o

Transmission Loss —10*log_10 IplA2

— new discrete TBC
1001 .. absorbing layer |
5 - : . 9 10

Range r [km]

FIG. 5. Transmission loss & =99.5 m for Example 2: in comparison to the exact half-space solution, the
truncation of the computational domain at 200 m (the given bottom attenuation then represents an absorbing
of 100 m) introduces a slight phase shift.

for the water region that fulfills the coupling condition (2.28):= 3q;. The two remaining
parametergy, g; are then determined by minimizing the approximation errafief A)/2

(in the maximum norm) over the interval [0.0008, 0.103], which contains the discrete sp
trum of L: pp = 1.0000071 g, = 0.2501753. We compare this approximation to the case
also using the CWAPE in the water. Furthermore, we show the results when using the
in the sea bottom (which clearly violates (2.23)) and when using the SPE in both regiol

Figure 7 displays a comparison of the transmission loss from 6.5 to 9 km for these differ
couplings. Itturns out that the solution for the coupled GWAPE/CWAPE model is very clo
to the one using the CWAPE in both media. While the CWAPE/SPE model violates t
coupling condition, it only deviates from the above solutions by a slight phase-shift tha
typical for the SPE in this example (cf. also the “pure” SPE model).

Now we turn to the dissipation-free situation of Example 1 and focus our attenti
on a conservative discretization of coupled models that satisfy the coupling condit
p1(2)/01(2) = u = const, and hence, preserve tiigR*; (op) 1 dz)-norm (see Section 2).
As a discrete analogue of (2.6) we obtain in the dissipation-free case

— “nl2
hD;JZlWE| -2 im| (s — a5 1% +iaug "Dy
i=0 0 Pj piKopef

x ((p1 — g DF 51 + iqiky DY D &5‘71)], (4.2)
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FIG. 6. \Vertical cut of the three solutions at= 7 km for Example 2{y/(z,r =7 km)|.

Example 3
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Range r [km]

FIG.7. Transmission loss @& =99.5 m in several coupled models (water and sea bottom) for the simulati
of Example 2.
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with p; = p(Zj) ando = p?/(p1 — Pod1)- Analogously, a discrete version of (2.7) can be
shown for the bottom regiop> J,

N ‘;n 2 nii/2
Z Uiob (plf)zkopefflm[(( ql)l/f T +iapky DV 1)

x (P2 =) DR dS 1 +iabllG Dy DU | 49)

with op = (p*l’)z/(pl - poql) For coupled models usually takes different values in the
water and bottom regions. It follows from (4.2), (4.3) that the weighted distreteorm
onj € Ny is preserved,

(e
<
)

Il
(@]
o
>
o

J— 7n
12 =h" W +h
=0 7P i

(4.4)

[
Q
o
k)
o

provided that the coupling condition (2.23) is fulfilled.
Figure 8 illustrates that the discretté-norm (4.4) is conserved as long as the coupling
condition (2.23) is satisfied. In all four simulations we used the WAPE of Claerbout for t

Example 3
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FIG. 8. Coupled WAPE-models conserve the disciietenorm (4.4) only when satisfying the coupling con-
dition p;/0; = = const f——).
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water region and different models in the sea bottom; only the hybrid WAPE-model v
constantpy(z)/d1(z2) = u = 3 renders the scheme conservative (only for this numeric
illustration we choose the valugg = 0.6, g; =0.2). A coupling to the SPE (like in [37])
or to a WAPE in the bottom witlp?/q® = 114 # 3 all yields a nonconservative scheme. Wi
point out that these schemes are not only nonconservative for the particular norm (4.4
also for any other weighted?-norm.

In the simulations for Fig. 8, the second sum of (4.4) (for the exterior of the computatic
domain) was evaluated via (4.3).

ExAaMPLE 4. In this example we illustrate our discussion from Section 3 on the “be
uniform exterior discretization” for the case of evanescent waves. We want to answe
following question: given a uniform interior discretization, can the result from a glo
ally uniform z-discretization be improved by choosing a finer exterialiscretization, or,
equivalently, by using a DTBC that corresponds to such a finer discretization?

As a model problem for this test we consider the SPE (1.6 or0, r > 0 with a
homogeneous Dirichlet BC at=0, ko =2 m?, and the “potential well¥/ (z2) =0, 0< z <
z,=100 m V(2) =V, =0.3, z> z,. In this example, plane waves with a wave numbe
k < kerit = +/1.2 m! are evanescent in the exterior domais z,, andk > kgt transmits a
traveling wave into the exterior. We choose here the Gaussian beairk2xp0.003 n12
(z — 50 m)2) with k=1 m! as an initial condition. For this choice &f“most” of the
Fourier components of this wave correspond to evanescent modes in the bottom. H
this wave will be predominantly reflected back into the interior domain.

Figure 9 compares the effect of choosing different (uniform and nonunifpiigcreti-
zations. We show the results of this simulation at the rang@00 m when the wave packet
has been reflected back from the water—bottom interface. The solid line was obtained wit
uniformz-discretizatiorhg = 0.05 m, and it will serve as our “exact” reference solution. Th
dashed line shows the solution with the uniform grid spabifyg 0.25 m. In the following
comparisons we will keep this coarser interior grid and will vary the uniform exteri
grid. Following our discussion from Section 3, we used a gradual transition between t
two grid spacings in the depth interval 100-110 m (piecewise linear grid spacing func
h(2)).

The dotted curve of Fig. 9 gives the results with the finer extezidiscretization
h, =0.1 m. Close to the sea bottom it shows significant improvements over the unifc
discretization withh;. In the interval O< z < 60 m both curves almost coincide as the in
terior discretization error is dominant there, and it implies inaccurate wave speeds the
reflected in the clearly visible phase shift. The dotted curve still exhibits this phase shift L
the sea bottom at 100 m, but for the dashed curve the error in the intervak80<.00 m
is dominated by the effect of the exterior discretization. It thus seems that the effec
the reduced exterior discretization error (due to the finer exterior discretization) may
weigh (in the interior domain!) the additional reflection errors incurred by the nonunifo
grid.

ThelL?(0, 100)-errors (w.r.t. the solid curve) of the solutions with the unifbgrdiscreti-
zation and the nonunifornin;/h,-discretization are, respectively, 0.0370 and 0.026
Using an even finer exterior discretization does not seem to improve the result much fu
(L2-error 0.0266 for théa, /ho-discretization). A finer exterior discretization would, how-
ever, require a thicker region to adapt the two grids.
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Example 4
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FIG. 9. The “best uniform exterioz-discretization” may be finer than the interior discretization. Vertical cut
of the three solutions at=200 m for Example 4: the solution-() calculated on a nonuniform grid (finer grid
in the exterior domain than in the interior) is more accurate in the interior domain than the solution obtained «
uniformly coarse grid (- - -). The reference solution (: ) was calculated on a uniformly fine grid.

We thus conclude that finer exterior discretizations may indeed be advantageous ir
case of evanescent waves, and for large ranges these are the important modes in the ¢
ered applications of underwater acoustics.

5. CONCLUSIONS

We have derived a new discretizatiodigcrete TBQ of the TBC for the WAPE of
acoustics. Itis of discrete convolution form involving the boundary data from the whole “pz
range.” The convolution coefficients are calculated via a simple three-term recurrenc
relation and they decay lik®(n~%2). Since our new DTBC has the same convolution
structure as existing discretizations, it requires the same computational effort but imprc
two shortcomings: DTBCs are more accurate (in fact, as accurate as the discrete half-s
problem) and they yield an unconditionally stable scheme.

We point out that the superiority of DTBCs over other discretizations of TBCs is not r
stricted to the WAPE or to our particular interior discretization scheme (see, e.g.,[5,17, 1
The crucial point of our derivation was to find the inveBs¢ransformation of (3.10) explic-
itly. In more general applications (e.g., higher orderéagproximations or 3D problems)
it might be necessary to derive the convolution coefficients in (3.14) through a nume
cal inverseZ-transformation [30], but this does not change the efficiency and stability
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the presented method. As a general philosophy, DTBCs should be used whenever t
accurate solutions are important.

APPENDIX A: PROOF OF THEOREM 1 (WELL-POSEDNESS OF THE WAPE)

In Theorem 1 we assumed thét p, o1 € L*(R"). Then, the Schudinger operator
L = —ko2pdz(p™"3;) + V(2 (A1)

with a homogeneous Dirichlet BC at= 0 is self-adjoint inL?(R™; p~ d2) with the dense
domain,

D(L) = HH® ) N {g | p o, € HI®RH}. (A.2)

We now consider the operatdrL) = (po — p1L)/(1 — g1 L) defined as

f(L):/ f(o)dP, (A.3)
with d P, denoting the projection-valued spectral measure of the opdrafofr [18, 38]).
According to [18, Theorem XI1.2.6] the domain 6{L) is dense inL2(R™; p~1d2) if and
only if 1 = ql‘l, the pole off (1) is not an eigenvalue df. In this casef (L) is self-adjoint
and, by Stone’s theorem [38ko f (L) generates a unitar@q-group onL?(R*; p~1d2)
which yields the unique solution to (2.1).

If % coincides with an eigenvalug of L, then (2.1) still admits a unique mild solution for
all initial data in the orthogonal complementgf, the unique eigenfunction corresponding
to A;. Theorem 1 generalizes the well-posedness analysis for the WAPE on finite intet
given in [3]. There, howevet, can easily lie in the (pure eigenvalue) spectruntpfhat
then restricts the class of admissible initial conditions.

APPENDIX B: WAPE-SPE COUPLING

Here, we discuss the mathematically sound formulation of the coupled WAPE-SPE m
for the simple model case of constanaind p. We first consider the pseudo-differential
operatorf (L) appearing in the WAPE (2.1) with = _ko—zazz_ Due to the BC az=0 it
can be expressed in terms of Fourier—sine transforms as

2 [ [ . :
(L)) = ;/0 /O P (&)Y (y) sinEy) sin(§2) dy d, (B.1)
with the symbol
Po — Piky %€2
PE)=—F—. B.2
€ = e (82)

In the coupled WAPE-SPE model one would formally want to write the evolution eqt
tion as

Yr = ikoAyr (B.3)
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with
(m—l)w O<z<z (B.4a)
ap = { Uivaiet ~ )Y - '
K92y, 7> 7. (B.4b)

However, as the pseudo-differential operator in (B.4a) is nonlocal, acting?dR"), it
cannot be simply restricted to the intervak@ < z,. It is therefore appropriate to define the
coupled evolution equation on the symbol level of the two involved operators (cf. [20, 25
Without attenuation both the SPE and the WAPE conservé.theorm and the discrete
analogue of this conservation is the main ingredient for showing unconditional stability
the finite difference scheme in Section 3. Therefore we postulate that the coupled mc
also has to conserve the&-norm. This can be achieved if the operafoon the right-hand
side of (B.3) is interpreted as the Weyl operator (see [20]),

2 [ [® . .
Aw(2)=;/0 /0 a<¥,E)w(y)sm(éy)sm(EZ)dydz (B.5)

to the symbol

PE)—-1 O0<z<z,
a(z, &) = (B.6)

2
—%52, zZ> 7,

Asa(z, &) is real, one readily verifies that the evolution equation (B.3), (B.5) conserves t
L2-norm.

Due to the pole of the symbdi (&) it would be quite difficult to appropriately discretize
(B.3), (B.5), and it is beyond our scope here. We remark that finite difference scheme:
pseudo-differential equations with smooth symbols have recently been studied in [31].
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